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Abstract

Mapping tools are needed to document the location and extent of Phragmites australis, a tall grass that invades coastal marshes throughout
North America, displacing native plant species and degrading wetland habitat. Mapping Phragmites is particularly challenging in the freshwater
Great Lakes coastal wetlands due to dynamic lake levels and vegetation diversity. We tested the applicability of Hyperion hyperspectral satellite
imagery for mapping Phragmites in wetlands of the west coast of Green Bay in Wisconsin, U.S.A. A reference spectrum created using Hyperion
data from several pure Phragmites stands within the image was used with a Spectral Correlation Mapper (SCM) algorithm to create a raster map
with values ranging from 0 to 1, where 0 represented the greatest similarity between the reference spectrum and the image spectrum and 1 the least
similarity. The final two-class thematic classification predicted monodominant Phragmites covering 3.4% of the study area. Most of this was
concentrated in long linear features parallel to the Green Bay shoreline, particularly in areas that had been under water only six years earlier when
lake levels were 66 cm higher. An error matrix using spring 2005 field validation points (n=129) showed good overall accuracy—81.4%. The
small size and linear arrangement of Phragmites stands was less than optimal relative to the sensor resolution, and Hyperion's 30 m resolution
captured few if any pure pixels. Contemporary Phragmites maps prepared with Hyperion imagery would provide wetland managers with a tool
that they currently lack, which could aid attempts to stem the spread of this invasive species.
© 2006 Elsevier Inc. All rights reserved.
Keywords: Phragmites; Remote sensing; Hyperspectral; Hyperion; Invasive species; Wetlands; Great Lakes; Green Bay
1. Introduction

Phragmites australis is an invasive species of special concern
in the wetlands of the North American Great Lakes (Marks et al.,
1994; Galatowitsch et al., 1999). It is a cosmopolitan species of
wetland grass native to every continent but Antarctica. The
genotypes native to North American have been joined by an
aggressive introduced genotype, apparently brought by Euro-
pean settlement (Lynch & Saltonstall, 2002; Saltonstall, 2002).
The primary concern relative to Phragmites invasion is the loss
of species richness and consequent potential for extinction and
loss of biodiversity (Havens et al., 1997; Chambers et al., 1999).
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To understand the magnitude and distribution of Phragmites
invasions requires research in a spatial context at several scales.
At the scale of individual stands, field survey is essential to
understand the myriad factors which drive invasions and the
environmental changes that follow. It is equally important to
determine if these small scale patterns are consistent across a
wider geographic scale and to tie these small scale patterns to
the larger patterns of invasion. The appropriate scale,
uniformity, and timeliness required of these data are all but
impossible to acquire with only field assessment and monitoring
(Heywood, 1995).

Airborne hyperspectral sensors such as AVIRIS, CASI,
HyMap and PROBE-1 have been somewhat successful in
mapping vegetation at the species level (Bachmann et al., 2002;
Lopez et al., 2004; Parker Williams & Hunt, 2002; Schmidt &
Skidmore, 2001). However, the high cost and limited coverage
of airborne sensors is a barrier to their use for wider scale
management and study. Space platform remote sensors such as
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Landsat provide the wider view and lower cost needed for
practical applications, but have shown less facility for
distinguishing species than have hyperspectral sensors includ-
ing Hyperion (Goodenough et al., 2002; Thenkabail et al.,
2004). The Hyperion sensor aboard the EO-1 satellite is an
experimental sensor that merges the spectral resolution of
airborne hyperspectral instruments with the practicality of
satellite remote sensing (USGS, 2006a). We utilized Hyperion
imagery to determine if a space platform hyperspectral sensor
could distinguish invasive wetland plant species, as has already
been done using more expensive airborne hyperspectral sensors
(Bachmann et al., 2002; Lopez et al., 2004).

In this study we tested the applicability of Hyperion for
mapping monodominant stands of Phragmites in the coastal
wetlands of the Great Lakes. We acquired a Hyperion image of
the west coast of Green Bay, Wisconsin and predicted the
occurrence of large stands of monodominant Phragmites by
creating a two-class thematic map. We evaluated the Phrag-
mites map with field data.

2. Methods

2.1. Study site

The Hyperion image used in this study was a 7.5 km swath
within Wisconsin extending northeast from the City of Green
Bay to the Michigan state border. The image intersected a 30 km
section of the Green Bay shoreline centered on the Pensaukee
Fig. 1. Study site on the we
and Oconto Rivers (Fig. 1). Hyperion imagery must be tasked in
advance, and image acquisition was requested to occur between
September 1 and October 15, 2004 to take advantage of more
pronounced spectral differences between Phragmites and other
wetland species in mid to late autumn (Bachmann et al., 2002;
Bernthal & Willis, 2004). Actual image acquisition took place
on September 4, 2004 at 11:23:53 a.m. CDT., during the first
satellite overpass within this time window. Cloud cover was less
than 25% of the image, and was mostly west of coastal areas.

The entire coastal study area has very level terrain, and
average land elevation in the study area (178.3 m) rises only
∼2 m above Green Bay (USGS, 2006b). The study area
contains extensive areas of wetland and hydric soils (National
Cooperative Soil Survey, 1988), and coastal wetlands expand
and contract as water levels in Green Bay fluctuate in response
to climate change (Harris et al., 1977). Lake levels at the time of
image acquisition were 176.3 m, close to their historic low
extremes (U.S. Army Corps of Engineers, 2006). Upland land
cover consists primarily of hardwood forests, agricultural crops,
pasture, and hayland (Wolter et al., 2006).

2.2. Data preprocessing

Hyperion has a low signal to noise ratio in comparison to
airborne hyperspectral sensors, the result of signal lost to
atmospheric absorption and the reduced energy available from
surface reflectance at orbital altitude. In addition, detector arrays
used in the Hyperion sensor were “spares” originally designed
st coast of Green Bay.



Table 1
Bands removed prior to image analysis

VNIR SWIR

Bands removed USGS
level 1 R data

1,2,3,4,5,6,7,58,59,
60,61,62,63,64,66,
67,68,69,70

71,72,73,74,75,76,226,227,
228, 229, 230,231,232, 233,
234,235,236, 237, 238,239,
240,241,242

Additional bands
removed prior to image
analysis due to noise

77,79,80,81,98,99,100,120,
121,122, 123,124,125,126,
127,128,129,130, 131,132,
133,134,165,166,167,168,
169,170,171,172,173,174,
175,176, 177,178,179,180,
181,182,184,185, 186,187,
190,219,220, 221,222,223,
224,225
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for another purpose, which further decreases the signal to noise
ratio (Jupp & Datt, 2004). As a result, Hyperion data require
preprocessing to address problems of miscalibration and noise
before use (Datt et al., 2003; Goodenough et al., 2002; Han
et al., 2002). Full column atmospheric effects necessitate
atmospheric correction for many applications (e.g. multi-
temporal studies, multi-scene studies, and use of spectral
libraries), but Datt et al. (2003) state that “it is not necessary to
atmospherically correct image data for a single observation.”
Our choice of preprocessing techniques was based on validation
and calibration study recommendations (Jupp & Datt, 2004) and
widespread application in other studies using Hyperion (Datt
et al., 2003; Kruse et al., 2003; Apan et al., 2004) and airborne
hyperspectral data (Lopez et al., 2004; Underood et al., 2003).

Only 147 of the 242 total Hyperion bands were used in the
analysis, because many of the bands exhibited low signal to
noise ratio or other problems. Several of the Hyperion sensor's
bands are unusable, particularly those at wavelengths most
prone to atmospheric scattering, so that USGS delivers level 1R
Hyperion data with 44 bands set to 0 values (Table 1). An
additional 50 bands with excessive noise were identified by
inspecting for speckling that lacked a systematic relationship to
features visible in other bands (Datt et al., 2003) and removed
prior to image analysis. One redundant band in the overlap
between the Short Wavelength Infrared (SWIR) and Visible and
Fig. 2. Digital number data in image column 46 are consistently lower than data
in adjacent columns due to a miscalibrated sensor.
Near Infrared (VNIR) sensors was also removed, leaving 147
bands to be stacked for image processing.

Hyperion is a push broom sensor, collecting simultaneously
across 256 detectors along the track of the satellite's orbit
(USGS, 2006a). Miscalibrated and dead detectors show up as
vertical stripes in the image (Han et al., 2002; Kruse et al.,
2003). In many of the striped columns, digital number (DN)
values followed the general patterns of land cover reflectance
but were consistently lower than those in the adjacent columns
(Fig. 2). These columns were judged to contain meaningful
information and were corrected by normalizing the striped
columns to the mean of the two adjacent columns using a simple
additive offset that was applied to each pixel in the striped
column. This localized normalization was preferable to global
normalization (Datt et al., 2003) because column means
systematically varied across the image as increasing proportions
of each column were measuring the water of Green Bay. A
smaller number of the striped columns had DNs which were
constant—clearly containing no meaningful information (Han
et al., 2002). These columns were corrected by interpolating
values from the corresponding pixels in the immediately
adjacent columns (Datt et al., 2003; Pearlman, 2003).

The panchromatic band of a Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) orthorectified image was used as a base
map for georectification. The 15 m cell size provided adequate
resolution and the orthorectification insured that the geographic
fidelity was consistent throughout the image. A 2nd order
polynomial transformation was used, requiring a minimum of 6
control points (LEICA Geosystems, 2003a, pg. 339). Nine
reliable control points were located with good distribution
throughout the image. The resulting transformation had an
estimated total root mean square error of .2962 pixels or about
8.9 m, providing adequate spatial accuracy for the small features
being mapped. Nearest neighbor resampling was used to retain
as much spectral fidelity as possible.

To minimize the influence of systematic sensor noise during
image analysis, the minimum noise fraction (MNF) transfor-
mation was used (Green et al., 1988; Lee et al., 1990). The MNF
transform identifies systematic noise (which is presumed to
Fig. 3. Five training pixel candidates were chosen based on field data. Their
spectra plotted through the bands of Hyperion's VNIR sensor showed them to be
similar with J10 being the most anomalous.



Fig. 4. Four of the twelve 121-pixel sampling windows (dark grey) used in the
two-stage cluster sampling of the coastal study area (light grey). Windows E and
F are 11×11 pixels; the shapes of C and D have been altered to accommodate
lake and river shorelines that are outside of the study area.

Fig. 5. Approximately 52% of the predicted Phragmites was on the newly
exposed mudflat between the 1998 and 2004 shorelines.
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arise from sensor and processing anomalies) and can then
segregate it from the meaningful signal. Covariance for the
MNF transformation was calculated from a subset of the image
centered over a large, spectrally homogeneous area of open
water to minimize the possible contribution of systematic
variations in the valid signal from being confused with sensor
noise (LEICA Geosystems, 2003b, pg. 163). The transform was
applied separately to each trial of the target detection process.

Clouds were masked out of the image because they obscured
ground conditions, and the waters of Green Bay too deep to
support Phragmites growth were also masked out.

2.3. Image analysis

Image analysis was performed with the ERDAS IMAG-
INE™ 8.7 Spectral Analysis module (LEICA Geosystems,
2003b). We used a target detection mode of operation, which
searched the input image for target material suspected to be
present in very low concentration (in this case, Phragmites). A
reference spectrum representing Phragmites was developed for
use in target detection by extracting from the Hyperion image
five spectral data sets centered on pure Phragmites stands
identified during field reconnaissance (Fig. 3). The initial five
spectra appeared to be similar, but two of the spectra (J10 and
L16) were subsequently eliminated based on field data and
visual comparison of each sample spectrum to the mean
spectrum of all five Phragmites samples (Fig. 3). The three
retained samples (A4, C16, K16) were distributed across the
study site, with a minimum distance between points of 7.5 km.
Spectra for these three samples were merged into a single
reference spectrum. The target detection operation was then run
with the Spectral Correlation Mapper (SCM: de Carvalho &
Meneses, 2000) spectral analysis methodology, which created a
continuous value raster with values ranging from 0 to 1, where 0
represented the greatest similarity between the reference
spectrum and the image spectrum, and 1 the least similarity.
The SCM is a refinement of the Spectral Angle Mapper (SAM)
algorithm, which determines the spectral similarity between two
spectra by calculating the angle between the two spectra,
treating them as vectors in a space with dimensionality equal to
the number of bands (Kruse et al., 1993). SAM (and by
inference SCM) is designed for use primarily with hyperspectral
data, and have broad application in hyperspectral remote
sensing of vegetation (Artigas & Yang, 2004; de Lange et al.,
2004; Eckert & Kneubühler, 2004; Lumme, 2004; Ustin et al.,
2002). Although both spectral mapper algorithms are supported
in ERDAS IMAGINE (LEICA Geosystems, 2003b), we chose
the SCM algorithm because it standardizes vectors prior to
calculating the spectral angles such that positive and negative
correlations between samples can be distinguished, whereas



Table 2
Error matrix using spring 2005 reference points

Hyperion class Field survey data User's accuracy

Non-Phragmites Phragmites Total

Non-Phragmites 83 10 93 89.2%
Phragmites 14 22 36 61.1%
Total 97 32 129

Overall accuracy
Producer's accuracy 85.6% 68.8% 81.4%
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SAM does not distinguish between positive and negative
correlation (Lumme, 2004).

The continuous value raster layer created with the merged
spectra of these three sample points was used to create a final
binary thresholded (yes/no) image of predicted monodominant
Phragmites. This map was created using an iterative process
whereby the threshold for the Phragmites class was adjusted
and then tested against the field validation data until the
maximum overall accuracy was achieved.

2.4. Field data collection

Field validation data were collected in Autumn 2004 and
Spring 2005. Autumn field data were collected at 38 sample
locations shortly after image acquisition, but before image
processing. Additional data were acquired in Spring 2005
(n=129) to better randomize the validation data and to increase
the total number of validation sites to 167. Phragmites culms
from one season will generally remain standing through the next
growing season (Haslam, 1969), which allowed reliable field
data collection despite the temporal offset between image
acquisition and Spring 2005 field work. Autumn field samples
targeted prospective locations of large Phragmites stands, pre-
selected based on aerial photography, the Wisconsin Wetlands
Inventory, United States Geological Survey (USGS) quadrangle
maps, and the Hyperion image itself. Spring field data were
collected based on a two-stage cluster sampling scheme in
which 121-pixel sampling windows (usually 11×11 pixel
squares) were defined around twelve points randomly selected
on the image (Fig. 4). Within those 12 sampling windows, a
total of 129 points was selected by stratified sampling of the two
strata, Phragmites and not-Phragmites. This two-stage cluster-
ing scheme thus provided randomization but reduced expensive
field travel time by limiting sampling to the twelve sampling
windows. These randomized spring data were used to assess the
accuracy of the binary map of predicted monodominant
Phragmites. The full data set of 167 sites was used to evaluate
Table 3
Errors distributed across land cover classes of all field validation points

Hyperion class Field survey data

ForestC ForestD Imperv Meadow MixedEM Oth

Non-Phragmites 3 11 1 25 18 2
Phragmites 4 0 1 0 6 0
Total 7 11 2 25 24 2
Producer's accuracy 42.9% 100.0% 50.0% 100.0% 75.0% 100
confusion between Phragmites and nine other land cover
classes: cattail (Typha), mixed emergent vegetation (MixedEm),
meadow, conifer forest (ForestC), deciduous forest (ForestD),
scrub, impervious, shallow water, and “other.” The purpose of
utilizing these classes was not to map them, but to classify error,
and the full data set of 167 sites was needed to increase
representation of several of the land cover classes.

Methods for recording field observations were the same for
both sets of samples. The sample area was defined as a
60 m×60 m square, the equivalent site of four adjacent pixels,
centered on the sample point. Data collected for each sample
point included a description of the vegetation, a sketched map of
vegetation distribution, digital photographs, GPS location, and
estimated GPS accuracy. Relative vegetation cover values
between 1 (sparse) and 6 (very dense), corresponding to Braun-
Blanquet cover class ranges (ASTM, 1997) were recorded for
major polygons of vegetation associations drawn on the map.
Based on field data, a sample area was classified as Phragmites
when Phragmites of density class 5 or 6 (≥70% cover) filled a
majority of the sample area or where Phragmites of density
class 4 (50 to 70% cover) filled the entire sample area. Other
vegetation classes were similarly defined.

3. Results

The final classification predicted monodominant Phragmites
covering 3.4% of the study area. Most of this was concentrated in
long linear features parallel to the Green Bay shoreline. In many
cases these were areas that had been under water only six years
earlier when lake levels were 66 cm higher. On the strip of land
between the 1998 water level and the 2004 water level, the final
classification predicted 13.3% of the area to be covered by
dominant Phragmites (Fig. 5). Just over half of the study area's
predicted Phragmites was concentrated within this lakebed
exposure zone, which constituted less than 15% of the study area.

An error matrix using the spring 2005 field validation points
showed good overall accuracy—81.4% (Table 2). Of the 36
points predicted to be dominated by Phragmites, 22 had been
accurately predicted for a user's accuracy of 61.1% for the
Phragmites-dominant class. Of the 32 validation points where
the land cover was actually dominated by Phragmites, 22 points
had been correctly predicted for a producer's accuracy of 68.8%.

An error matrix between Phragmites and other land cover
types identified specific sources of confusion (Table 3). The
conifer (ForestC) class, which was predominantly tree planta-
tions, was the most anomalous area of confusion. The largest
contiguous area of erroneously predicted Phragmites was
User's accuracy

er Phrag. Scrub Typha Water Total

17 18 14 14 123 86.2%
28 0 4 1 44 63.6%
45 18 18 15 167

.0% 62.2% 100.0% 77.8% 93.3% Overall accuracy 80.24%



Fig. 6. Spectral plots of the mean of all conifer reference samples and the mean
of the Phragmites training samples suggests that most of the similarity occurs in
the SWIR wavelengths.
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actually a conifer plantation located approximately 1 km from
the shoreline. Other similar sized stands of conifers in the study
area also contained scattered Phragmites false positives. In the
error matrix which included the complete set of reference points
(Table 3), 4 of the 7 ForestC reference points were erroneously
predicted to be Phragmites. None of these 4 sample sites
contained any Phragmites.

More predictably, there was also some confusion between
the mixed emergent vegetation class (MixedEm) and the
Phragmites class, with 6 of the 24 mixed MixedEm points
being incorrectly predicted to be dominated by Phragmites. In
this case 5 of the 6 points did contain Phragmites, but at
densities that did not meet the class criteria. Four of the 18
Typha reference points (Table 3) were erroneously predicted
to be monodominant Phragmites. Although many of the sample
points for Typha and for Phragmites contained some of both
genera, only one of these four incorrectly predicted points
contained any Phragmites.

4. Discussion

The Phragmites maps prepared using the Hyperion imagery
represent a substantial advance over existing wetland maps for
the western coast of Green Bay. Wisconsin Wetlands Inventory
maps for the region were prepared using aerial photos from
1978 and 1979 (Johnston, 1984), when water levels in Green
Bay were nearly 70 cm higher than they were in 2004 (U.S.
Army Corps of Engineers, 2006). Water level fluctuations on
this scale have occurred in Lake Michigan regularly over time
spans of 10 to 30 years since at least 1918. Because of the
gradually sloping bathymetry along the west coast of Green
Bay these fluctuations lead to dramatic changes in the extent
and location of the coastal wetlands (Harris et al., 1977). It is
not surprising that there was almost no match between
areas mapped as Phragmites by this project and areas mapped
as emergents by the Wisconsin Wetlands Inventory because
of the large change in environmental conditions that oc-
curred over the 25 years between the two inventories (Pengra,
2005).

The Phragmites maps prepared by this project could alert
local resource managers to “hotspots” of Phragmites invasion
that could be targeted for early control efforts. When asked to
identify largePhragmites stands as potential field reconnaissance
sites in Fall 2004, local employees of the Wisconsin Department
of Natural Resources identified a stand that was close to a
highway, but were apparently unaware of much larger Phrag-
mites stands subsequently found by this project's field research-
ers that were less visible from major highways. Reasonably
accurate, contemporary Phragmites maps prepared with Hy-
perion imagery would provide wetland managers with a tool
that they currently lack, one that could aid attempts to stem
the spread of this invasive species. The dynamic nature of these
wetlands requires more frequent mapping than once every
25 years.

User's accuracy for predicted Phragmites (61.1%) compares
favorably with previous attempts at remote sensing of Phrag-
mites with airborne hyperspectral sensors, despite Hyperion's
much coarser spatial resolution and reduced signal to noise
ratio. Bachmann et al. (2002) distinguished Phragmites from
other wetland species with 68% accuracy using the HyMap
airborne sensor with a spatial resolution of 4.5 m. Lopez et al.
(2004) were able to distinguish between monodominant stands
of Phragmites, Typha and mixed wetland vegetation with 91%
accuracy using the PROBE-1 airborne hyperspectral sensor
with 5 m resolution. In addition to the difference in sensors and
sensor platforms used, our study differed from theirs by
covering a much longer swath of coastline (28 km vs.
∼6 km) containing multiple wetland complexes, presumably
encompassing a wider range of environmental conditions.

Phragmites false positives occurring at MixedEm and Typha
reference points were expected due to the intermixing of these
vegetation classes and the similar structure and context of the
areas where these points were located. The Phragmites false
positives occurring in the ForestC areas were not expected.
However, similar errors of commission were experienced by
Ernst-Dottavio et al. (1981) albeit with Landsat multispectral
data rather than hyperspectral data. They found, “The mixing of
water and vegetation in deep marshes results in a spectral
response pattern that is similar to conifers …this may result in
errors of commission where conifers are classified as deep
marshes.” Comparison of the plotted mean spectra of Phrag-
mites training samples and the mean spectra of the ForestC
reference points shows them to be similar in hyperspectral data
as well (Fig. 6). Through the visible portion of the spectrum,
reflectance is consistently lower for the ForestC reference
samples. However, from the red edge through most of the bands
of the NIR and SWIR the mean spectra are very similar. In spite
of removal of 51 bands from the SWIR range, the number of
SWIR bands (wavelengthsN1000 nm) used was roughly twice
the number of VNIR bands (wavelengthsb1000 nm) used. The
SCM algorithm gives equal weight to all of the bands included
in the data; therefore the image analysis relied heavily on the
SWIR data. Spectral differences between Phragmites and 26
other saltmarsh vegetation associations have been found to
occur at wavelengths below 1100 nm (Schmidt & Skidmore,
2003). If this holds true for freshwater wetland vegetation
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associations as well, removal of many of the SWIR bands would
not negatively impact accuracy of Phragmites prediction and
would likely eliminate the confusion that occurred with the
ForestC class in this study.

Stands of Phragmites in the study area were typically long
and narrow: several tens of meters in the dimension parallel to
the shoreline, but b20 m in the dimension perpendicular to the
shoreline. Therefore, even though Phragmites occurred in
stands that appeared to be large and monodominant to field
observers, Hyperion's 30 m resolution captured few if any pure
pixels. A similar problem is experienced in Atlantic Coast
marshes, where Phragmites typically grows in narrow strips
adjacent to denseMyrica cerifera shrub thickets, and is difficult
to detect due to mixing with other categories (Bachmann et al.,
2002). In this study, selection of a few optimal training samples
which were merged into a representative test spectrum produced
good accuracy. However, the less than ideal feature size relative
to sensor resolution likely limited our ability to detect small or
narrow Phragmites stands.

Data stream constraints and signal to noise issues limit the
spatial resolution of space platform hyperspectral sensors, so it is
likely that future sensors will not make dramatic gains in spatial
resolution. Subpixel classification techniques have been used
with airborne hyperspectral sensors with good success to predict
invasive species where the species of interest occurs in pixels
with mixed vegetation (Parker Williams & Hunt, 2002). Future
attempts to predict Phragmites and other wetland invasives with
Hyperion or other space platform hyperspectral sensors may
be able to improve accuracy using these subpixel/unmixing
techniques.

5. Conclusion

Space platform hyperspectral remote sensors will always be
at a disadvantage relative to airborne sensors with similar
spectral resolution in that they are further from the reflecting
surface and consequently receive less reflected energy. In
addition, the distortion and loss of signal as the energy passes
through the full extent of the atmosphere further degrade the
signal. The advantage of space platform remote sensing,
hyperspectral or otherwise, is the broad scale, practical,
repeatable collection of data which, because of these virtues, is
applicable to real world problems. This practicality is in many
ways the very point of remote sensing.

This study sought to apply Hyperion data to the real world
problem of invasive species. Hyperion was built with a “spare”
sensor retrofitted to the EO-1 satellite, which required
compromises in the optics to sensor relationship (Jupp &
Datt, 2004). In addition, the development of hyperspectral
image processing and analysis techniques for use with Hyperion
has been done by a relatively small group of researchers over
the few years since Hyperion's launch, because it is the only
sensor of its kind. In spite of these barriers, the results of this
study suggest that this first generation technology is approach-
ing a level of accuracy in species level remote sensing that
would provide a profoundly powerful tool for ecological
research and management.
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